Patogenia do enfisema pulmonar – eventos celulares e moleculares









Partindo de observações em cortes necroscópicos superficiais de pulmões humanos, Laennec, em 1834, descreveu o enfisema pulmonar como uma lesão decorrente da atrofia do tecido pulmonar, resultante da hiperinsuflação(1). O enfisema foi, então, redefinido como uma "anormal e permanente dilatação dos espaços aéreos distais do bronquíolo terminal"(2). Essa definição foi posteriormente modificada, incluindo-se "destruição da parede alveolar sem fibrose evidente"(3).

Atualmente, o enfisema pulmonar pode ser definido como um processo obstrutivo crônico, resultante de importantes alterações de toda a estrutura distal do bronquíolo terminal, denominado ácino, seja por dilatação dos espaços aéreos, seja por destruição da parede alveolar, ocasionando a perda da superfície respiratória e de irrigação sangüunea, diminuição do recolhimento elástico e hiperexpansão pulmonar(4-5). Essas alterações anatômicas podem atingir apenas uma parte do ácino ou toda a estrutura acinar, indicando a etiologia e o comportamento fisiopatológico da doença(5).

O enfisema centroacinar apresenta o ácino pulmonar, comprometido por um alargamento ou destruição dos bronquíolos respiratórios, predominantes em zonas apicais, associado à prática tabagista(6). O enfisema panacinar, encontrado em pacientes portadores de deficiência de alfa-1-antitripsina(7) e associado com enfisema centroacinar em pacientes tabagistas, resulta de uma simultânea e uniforme destruição das paredes alveolares e alargamento difuso do ácino pulmonar, predominante em zonas basais(6).

Ambos os tipos de enfisema podem ser encontrados em pacientes portadores de doença pulmonar obstrutiva crônica (DPOC), na qual, aproximadamente, metade dos pacientes apresentam ambas as formas de enfisema pulmonar, e cerca de 25% apresentam apenas uma das formas de enfisema(6).

O enfisema acinar distal ou parasseptal compromete a região periférica do ácino, dutos e sacos alveolares, envolvendo-os em uma camada aérea longitudinalmente aos septos interlobulares(8). O enfisema parasseptal localizado encontra-se associado ao pneumotórax espontâneo em adultos jovens e a bolhas pulmonares em idosos. Enfisema unilateral ou síndrome de MacLeod ocorre devido a complicações decorrentes de infecções causadas por varíola ou adenovirus na infância, e o enfisema lobar congênito surge, geralmente, em crianças antes do sexto mês de vida(8).

PATOGENIA DO ENFISEMA PULMONAR

Muitos processos parecem estar envolvidos com a patogenia do enfisema pulmonar. Porém, a hipótese do desequilíbrio enzimático proteinase-antiproteinase tem prevalecido como tema central nos últimos anos. De acordo com essa hipótese, a destruição da parede alveolar resulta da ação de enzimas proteolíticas ativas que degradam a matriz extracelular (MEC) e afetam a integridade de seus componentes, particularmente as fibras colágeno e elástica(9).

A formulação desse conceito foi fundamentada com base em duas observações:
a) indivíduos com deficiência de alfa-1-antiprotease, considerada um defeito genético transmissível por gene recessivo autossômico, geralmente desenvolvem enfisema pulmonar grave quando relativamente jovens(8);
b) modelos experimentais de enfisema pulmonar baseiam-se na nebulização ou instilação de enzimas proteolíticas, como papaína (Carica papaya)(5), elastase pancreática de porco(10) e elastase neutrofílica humana(11). Esse processo proteolítico, associado à destruição uniforme da MEC do ácino pulmonar, resulta em alterações morfo-histológicas e fisiológicas dos pulmões, equivalentes às alterações encontradas no enfisema em seres humanos(9).

A hipótese de o enfisema pulmonar estar correlacionado com a deficiência de alfa-1-antiprotease – a qual possui atividade inibitória sobre a elastase neutrofílica com maior rapidez do que sobre outras proteinases(12) – ou com o aumento da atividade elastolítica – resultante do acúmulo e da ativação de neutrófilos em fumantes, em comparação a não-fumantes(9) – sugere a ação das proteinases neutrofílicas como decisivas para o desenvolvimento do enfisema. Em uma análise das células inflamatórias – presentes no parênquima pulmonar e nos espaços aéreos terminais em pulmões cirurgicamente retirados de pacientes não-enfisematosos ou com enfisema leve ou grave – verificou-se um aumento do número de neutrófilos, macrófagos, linfócitos T e eosinófilos no tecido enfisematoso(13). Essas células apresentam um aumento aproximado de dez vezes nos pulmões com enfisema grave, comparando-se com os pulmões normais(9). Em estágios avançados da DPOC (associada à extensa obstrução das vias aéreas, particularmente das vias aéreas periféricas, e ao acelerado declínio das funções pulmonares), observa-se aumento do infiltrado neutrofílico(14). Stringer et al. demonstraram que a ação fagocitária dos neutrófilos encontra-se prejudicada quando estes são expostos ao extrato de fumaça de cigarro(15). Não apenas os neutrófilos, mas também os macrófagos alveolares apresentam disfunções quando expostos aos componentes do cigarro. Macrófagos alveolares são células predominantes nas vias aéreas e desempenham um papel essencial na gênese do enfisema, por meio da liberação de leucotrienos, prostaglandinas, citocinas, quimiocinas, metaloproteinases (MMP) e espécies reativas de oxigênio(16).

Em análise da submucosa bronquial de pacientes com DPOC, observa-se que o predomínio de macrófagos alveolares relaciona-se à gravidade da doença(17). Macrófagos de pacientes fumantes expressam aumento da proteína antiapoptótica B-cell leukaemia/lymphoma (Bcl-XL), sugerindo que o estresse oxidativo, induzido pela fumaça do cigarro, pode contribuir para a cronicidade da inflamação das vias aéreas, associada à redução da apoptose celular(18). Kirkham et al. observaram, em experimentos conduzidos in vitro, que em macrófagos humanos expostos à fumaça do cigarro, reduz-se a habilidade dessas células em fagocitar neutrófilos apoptóticos(19). Além do mais, a liberação de enzimas proteolíticas, neutrófilicas e macrófilicas induz a degradação do componente elástico da MEC, o que foi evidenciado tanto em modelos experimentais(20), como em pacientes humanos enfisematosos(21) e na integridade das fibras colágeno(22), em que se demonstrou o remodelamento e o aumento na síntese de colágeno pela ação da enzima proteolítica(10).

Em condições normais, existe um equilíbrio entre a produção de substâncias agressoras e protetoras no ácino pulmonar. Entretanto, a ação prolongada da prática tabagista, associada ao estresse oxidativo, induz o desequilíbrio dessas substâncias. As espécies reativas de oxigênio (ROS), derivadas do estresse oxidativo da fumaça do cigarro, promovem a ativação do fator nuclear kappa B (NF-кB) e da proteína ativadora 1 (AP1), que podem potencializar a resposta inflamatória em pulmões de pacientes com DPOC. Além disso, as MAP kinases (MAPK) e fosfatidilinositol 3-kinase (PI3K) são também ativadas pela ROS(23-24). Experimentos com pequenos roedores expostos ao ozônio confirmaram a ativação do NF-кB e p38 MAPK nas células pulmonares(25). Di Stefano et al. demonstraram aumento da expressão do fator nuclear NF-кB nas células bronquiais de pacientes com DPOC(26). Resultado similar foi observado em pulmões de pacientes com DPOC, em que o aumento da expressão do fator nuclear NF-кB associa-se à degradação do inibidor do NF-кB (I-кB)α(27). O estresse oxidativo pode causar, ainda, a fosforilação de I-кBα e sua subsequente degradação em algumas células típicas(28).

Outro ponto a ser considerado é relação entre senescência celular e o estresse oxidativo na patogenia do enfisema pulmonar. Junqueira et al. demonstraram que o estresse oxidativo pode se desenvolver gradualmente com a idade – em consequência do aumento dos níveis plasmáticos de produtos derivados da lipoperoxidação e da ativação de enzimas antioxidantes presentes nos eritrócitos circulantes na corrente sanguínea – enquanto os níveis plasmáticos de antioxidantes nutricionais diminuem(29). Os pulmões são continuamente expostos a oxidantes endógenos, gerados principalmente por células fagocitárias, ou exógenos, derivados de poluentes atmosféricos e, principalmente, da fumaça do cigarro(30). Pacientes com doença pulmonar obstrutiva crônica expressaram aumento dos biomarcadores de estresse oxidativo, tanto nos pulmões(31), como nos músculos respiratórios(32). Estudos conduzidos em ratos knockout SMP30 mostraram aumento de espaços aéreos sem destruição alveolar, revelando um novo modelo de pulmão senil(33-34).

Entretanto, ratos knockout SMP30 expostos à fumaça de cigarro demonstraram, além do aumento do espaço aéreo, a destruição da parede alveolar, associada ao aumento do estresse oxidativo(35). Nyunoya et al. demonstraram experimentalmente que uma única exposição à fumaça de cigarro é capaz de inibir a proliferação de fibroblastos (células essenciais para promover o reparo pulmonar após uma lesão). Múltiplas exposições à fumaça de cigarro levam essas células a um estado irreversível de senescência(36). Essas células, por sua vez, são incapazes de reparar o parênquima pulmonar e, consequentemente, contribuem para o desenvolvimento do enfisema(37). Além disso, células senescentes são incapazes de sintetizar proteínas(36). Essas evidências indicam um possível envolvimento da senescência celular na patogenia do enfisema pulmonar.
Entretanto, o fato de apenas a minoria dos fumantes desenvolverem a afecção sugere a existência de outros fatores de risco, além dos já citados, na gênese do enfisema pulmonar. Estudos em familiares de pacientes com enfisema pulmonar demonstraram, claramente, a importância do fator genético na determinação da suscetibilidade individual para essa doença(38). Estudos experimentais em camundongos expostos à fumaça de cigarro(39), ou após alteração genética(40), indicam a ocorrência de alterações morfofuncionais compatíveis com enfisema pulmonar.

Embora a hipótese do desequilíbrio enzimático proteinase-antiproteinase prevaleça na patogenia do enfisema pulmonar, ainda não está esclarecido se o desenvolvimento ocorre pelo excesso de proteases, pela deficiência de alfa-1-antiprotease ou por ambos. Entretanto, devem-se considerar também os fenômenos celulares e moleculares, autoimunes, a apoptose de células alveolares e fatores genéticos, os quais, em conjunto ou isoladamente, contribuem para a compreensão da fisiopatologia do enfisema pulmonar.

Artigo Original aqui!

REFERÊNCIAS
1. Laennec RTH. A treatise on diseases of the chest and on mediate auscultation. 4th ed. Forbes J, translator. London: Longman; 1834.
2. Terminology, definitions and classifications of chronic pulmonary emphysema and related conditions: a report of the conclusions of a Ciba Guest Symposium. Thorax. 1959;14(4):286-99.
3. The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis. 1985;132(1):182-5.
4. Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med. 2000;343(4):269-80.
5. Fusco LB, Pego-Fernandes PM, Xavier AM, Pazetti R, Rivero DH, Capelozzi VL, et al. Modelo experimental de enfisema pulmonar em ratos induzido por papaína. J. pneumol. 2002;28(1):1-7.
6. Snider GL. Clinical relevance summary: Collagen vs elastin in pathogenesis of emphysema; cellular origin of elastases; bronchiolitis vs emphysema as a cause of airflow obstruction. Chest. 2000;117(5 Suppl 1):244S-6S.
7. Snider GL. Experimental studies on emphysema and chronic bronchial injury. Eur J Respir Dis Suppl. 1986;146:17-35.
8. Tarantino AB, Sobreiro MC. Doença pulmonar obstrutiva crônica. In: Tarantino AB. Doenças pulmonares. 4a ed. Rio de Janeiro: Guanabara Koogan; 1997. p. 509-51.
9. Hogg JC, Senior RM. Chronic obstructive pulmonary disease – part 2: pathology and biochemistry of emphysema. Thorax. 2002;57(9):830-4.
10. Kuhn C, Yu SY, Chraplyvy M, Linder HE, Senior RM. The induction of emphysema with elastase. II. Changes in connective tissue. Lab Invest. 1976;34(4):372-80.
11. Janoff A, Sloan B, Weinbaum G, Damiano V, Sandhaus RA, Elias J, et al. Experimental emphysema induced with purified human neutrophil elastase: tissue localization of the instilled protease. Am Rev Respir Dis. 1977;115(3):461-78.
12. Rufino R, Lapa e Silva JR. Cellular and biochemical bases of chronic obstructive pulmonary disease. J Bras Pneumol. 2006;32(3):241-8.
13. Retamales I, Elliott WM, Meshi B, Coxson HO, Pare PD, Sciurba FC, et al. Amplification of inflammation in emphysema and its association with latent adenoviral infection. Am J Respir Crit Care Med. 2001;164(3): 469-73.
14. Culpitt SV, Maziak W, Loukidis S, Nightingale JA, Matthews JL, Barnes PJ. Effect of high dose inhaled steroid on cells, cytokines, and proteases in induced sputum in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1635-9.
15. Stringer KA, Tobias M, O'Neill HC, Franklin CC. Cigarette smoke extract-induced suppression of caspase-3-like activity impairs human neutrophil phagocytosis. Am J Physiol Lung Cell Mol Physiol. 2007;292(6):L1572-9.
16. Barnes PJ. Alveolar macrophages in chronic obstructive pulmonary disease
(COPD). Cell Mol Biol (Noisy-le-grand). 2004;50 Online Pub:OL627-37.
17. Saetta M, Di Stefano A, Maestrelli P, Ferraresso A, Drigo R, Potena A, et al. Activated T-lymphocytes and macrophages in bronchial mucosa of subjects with chronic bronchitis. Am Rev Respir Dis. 1993;147(2): 301-6.
einstein. 2010; 8(2 Pt 1):248-51
Patogenia do enfisema pulmonar – eventos celulares e moleculares 251
18. Tomita K, Caramori G, Lim S, Ito K, Hanazawa T, Oates T, et al. Increased p21(CIP1/WAF1) and B cell lymphoma leukemia-x(L) expression and reduced apoptosis in alveolar macrophages from smokers. Am J Respir Crit Care Med. 2002;166(5):724-31.
19. Kirkham PA, Spooner G, Rahman I, Rossi AG. Macrophage phagocytosis of apoptotic neutrophils is compromised by matrix proteins modified by cigarette smoke and lipid peroxidation products. Biochem Biophys Res Commun. 2004;318(1):32-7.
20. Janoff A. Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis. 1985;132(2):417-33.
21. Fukuda Y, Masuda Y, Ishizaki M, Masugi Y, Ferrans VJ. Morphogenesis of abnormal elastic fibers in lungs of patients with panacinar and centriacinar emphysema. Hum Pathol. 1989;20(7):652-9.
22. Wright JL, Churg A. Smoke-induced emphysema in guinea pigs is associated with morphometric evidence of collagen breakdown and repair. Am J Physiol. 1995;268(1 Pt 1):L17-20.
23. Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell. 2005;120(5):649-61.
24. Mossman BT, Lounsbury KM, Reddy SP. Oxidants and signaling by mitogen-activated protein kinases in lung epithelium. Am J Respir Cell Mol Biol. 2006;34(6):666-9.
25. Haddad EB, Salmon M, Koto H, Barnes PJ, Adcock I, Chung KF. Ozone induction of cytokine-induced neutrophil chemoattractant (CINC) and nuclear factor-kappa b in rat lung: inhibition by corticosteroids. FEBS Lett. 1996;379(3):265-8.
26. Di Stefano A, Caramori G, Oates T, Capelli A, Lusuardi M, Gnemmi I, et al. Increased expression of nuclear factor-kappaB in bronchial biopsies from smokers and patients with COPD. Eur Respir J. 2002;20(3):556-63.
27. Szulakowski P, Crowther AJ, Jiménez LA, Donaldson K, Mayer R, Leonard TB, et al. The effect of smoking on the transcriptional regulation of lung inflammation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006;174(1):41-50.
28. Bowie AG, Moynagh PN, O'Neill LA. Lipid peroxidation is involved in the activation of NF-kappaB by tumor necrosis factor but not interleukin-1 in the human endothelial cell line ECV304. Lack of involvement of H2O2 in NF-kappaB activation by either cytokine in both primary and transformed endothelial cells. J Biol Chem. 1997;272(41):25941-50.
29. Junqueira VB, Barros SB, Chan SS, Rodrigues L, Giavarotti L, Abud RL, et al. Aging and oxidative stress. Mol Aspects Med. 2004;25(1-2):5-16.
30. MacNee W. Pulmonary and systemic oxidant/antioxidant imbalance in chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2005;2(1):
50-60.
31. Rahman I, van Schadewijk AA, Crowther AJ, Hiemstra PS, Stolk J, MacNee W, et al. 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2002;166(4):490-5.
32. Barreiro E, de la Puente B, Minguella J, Corominas JM, Serrano S, Hussain SN, et al. Oxidative stress and respiratory muscle dysfunction in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171(10):1116-24.
33. Fujita T, Uchida K, Maruyama N. Purification of senescence marker protein-30 (SMP30) and its androgen-independent decrease with age in the rat liver. Biochim Biophys Acta. 1992;1116(2):122-8.
34. Mori T, Ishigami A, Seyama K, Onai R, Kubo S, Shimizu K, et al. Senescence marker protein-30 knockout mouse as a novel murine model of senile lung. Pathol Int. 2004;54(3):167-73.
35. Sato T, Seyama K, Sato Y, Mori H, Souma S, Akiyoshi T, et al. Senescence marker protein-30 protects mice lungs from oxidative stress, aging, and smoking. Am J Respir Crit Care Med. 2006;174(5):530-7.
36. Nyunoya T, Monick MM, Klingelhutz A, Yarovinsky TO, Cagley JR, Hunninghake GW. Cigarette smoke induces cellular senescence. Am J Respir Cell Mol Biol. 2006;35(6):681-8.
37. Massaro D, Massaro GD, Baras A, Hoffman EP, Clerch LB. Calorie-related rapid onset of alveolar loss, regeneration, and changes in mouse lung gene expression. Am J Physiol Lung Cell Mol Physiol. 2004;286(5):L896-906.
38. Silverman EK, Chapman HA, Drazen JM, Weiss ST, Rosner B, Campbell EJ, et al. Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1770-8.
39. Shapiro SD. Animal models for chronic obstructive pulmonary disease: age of klotho and marlboro mice. Am J Respir Cell Mol Biol. 2000;22(1):4-7.
40. Morris DG, Huang X, Kaminski N, Wang Y, Shapiro SD, Dolganov G, et al. Loss of integrin alpha(v)beta6-mediated TGF-beta activation causes Mmp12-dependent emphysema. Nature. 2003;422(6928):169-73.



--
Participe deste blog. Mande dicas e sugestões pelo email adm@chakalat.net

Seja um seguidor deste blog

  • EBOOK GRATUITO: Fisioterapia Respiratória na Pneumonia



  • Poste um Comentário

    Tecnologia do Blogger.